Transitions in early embryonic atrioventricular valvular function correspond with changes in cushion biomechanics that are predictable by tissue composition.

نویسندگان

  • Jonathan T Butcher
  • Tim C McQuinn
  • David Sedmera
  • Debi Turner
  • Roger R Markwald
چکیده

Endocardial cushions are critical to maintain unidirectional blood flow under constantly increasing hemodynamic forces, but the interrelationship between endocardial cushion structure and the mechanics of atrioventricular junction function is poorly understood. Atrioventricular (AV) canal motions and blood velocities of embryonic chicks at Hamburger and Hamilton (HH) stages 17, 21, and 25 were quantified using ultrasonography. Similar to the embryonic zebrafish heart, the HH17 AV segment functions like a suction pump, with the cushions expanding in a wave during peak myocardial contraction and becoming undetectable during the relaxation phase. By HH25, the AV canal contributes almost nothing to the piston-like propulsion of blood, but the cushions function as stoppers apposing blood flow with near constant thickness. Using a custom built mesomechanical testing system, we quantified the nonlinear pseudoelastic biomechanics of developing AV cushions, and found that both AV cushions increased in effective modulus between HH17 and HH25. Enzymatic digestion of major structural constituent collagens or glycosaminoglycans resulted in distinctly different stress-strain curves suggestive of their individual contributions. Mixture theory using histologically determined volume fractions of cells, collagen, and glycosaminoglycans showed good prediction of cushion material properties regardless of stage and cushion position. These results have important implications in valvular development, as biomechanics may play a larger role in stimulating valvulogenic events than previously thought.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

New insights into the developmental biomechanics of the atrioventricular valves.

In this issue, Butcher et al, 1 provide elegant data on the mechanical performance and material properties of stage 17, 21, and 25 chick embryonic atrioventricular (AV) cushions during normal development and following the selective digestion of AV cushion constituents. These data are then interpreted using a strain-energy based pseudoelasticity theory to determine maturational changes in AV cus...

متن کامل

Isolation and culture of avian embryonic valvular progenitor cells.

Proper formation and function of embryonic heart valves is critical for developmental progression. The early embryonic heart is a U-shaped tube of endocardium surrounded by myocardium. The myocardium secretes cardiac jelly, a hyaluronan-rich gelatinous matrix, into the atrioventricular (AV) junction and outflow tract (OFT) lumen. At stage HH14 valvulogenesis begins when a subset of endocardial ...

متن کامل

Serotonin Potentiates Transforming Growth Factor-beta3 Induced Biomechanical Remodeling in Avian Embryonic Atrioventricular Valves

Embryonic heart valve primordia (cushions) maintain unidirectional blood flow during development despite an increasingly demanding mechanical environment. Recent studies demonstrate that atrioventricular (AV) cushions stiffen over gestation, but the molecular mechanisms of this process are unknown. Transforming growth factor-beta (TGFβ) and serotonin (5-HT) signaling modulate tissue biomechanic...

متن کامل

Cyclic Mechanical Loading Is Essential for Rac1-Mediated Elongation and Remodeling of the Embryonic Mitral Valve

During valvulogenesis, globular endocardial cushions elongate and remodel into highly organized thin fibrous leaflets. Proper regulation of this dynamic process is essential to maintain unidirectional blood flow as the embryonic heart matures. In this study, we tested how mechanosensitive small GTPases, RhoA and Rac1, coordinate atrioventricular valve (AV) differentiation and morphogenesis. Rho...

متن کامل

MEKK3 initiates transforming growth factor beta 2-dependent epithelial-to-mesenchymal transition during endocardial cushion morphogenesis.

Congenital heart defects occur at a rate of 5% and are the most prevalent birth defects. A better understanding of the complex signaling networks regulating heart development is necessary to improve repair strategies for congenital heart defects. The mitogen-activated protein 3 kinase (MEKK3) is important to early embryogenesis, but developmental processes affected by MEKK3 during heart morphog...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Circulation research

دوره 100 10  شماره 

صفحات  -

تاریخ انتشار 2007